ILLUSTRATIONS

FIGURES

2.1	Improvements in maximum efficiency of engines and turbines	23	
2.2	Improvements in energy storage density		
2.3	Improvements in luminosity per watt for various technologies		
2.4	Improvements in luminosity per watt for LEDs and OLEDs	30	
2.5	Improvements in MIPS (million instructions per second) per price level (in U.S. dollars)	34	
2.6	Improvements in data rates	38	
3.1	Maximum scale of engines and turbines	48	
3.2	Examples of geometrical scaling with engines	48	
4.1	Minimum thresholds of performance in computer components	74	
4.2	Innovation frontiers for computers	76	
5.1	Innovation frontiers for audio and video equipment (quality versus size)	87	
5.2	Innovation frontiers for audio and video equipment (quality versus price)	87	
5.3	Minimum thresholds of performance for magnetic tape in systems	89	
6.1	Innovation frontier for the early years of the semiconductor industry	105	
6.2	Minimum thresholds of component/equipment performance for IC discontinuities	107	
6.3	Minimum thresholds of equipment performance in terms of number of transistors per chip	107	

ILLUSTRATIONS

xii	6.4	Innovation frontier for the semiconductor industry (after 1970)	109
	8.1	Typology of industry formation	132
	10.1	Cost per peak watt of solar cells	167
	TABL	ES	
	2.1	Technology paradigms for engine technologies	23
	2.2	Technology paradigms for transportation technologies	24
	2.3	Technology paradigms for electricity generation technologies	26
	2.4	Technology paradigms for lighting and display technologies	28
	2.5	Technology paradigms for information technologies	33
	2.6	Technology paradigms for telecommunication technologies	36
	3.1	Types of geometrical scaling	42
	3.2	Extent of geometrical scaling (approximate figures)	43
	3.3	Current prices per capacity for large- and small-scale oil tankers, freight vehicles, and aircraft	50
	3.4	Geometrical scaling and rates of improvement for selected	
		components	52
	3.5	Cost reductions for ICs, LCDs, and solar cells	53
	4.1	Classification of selected discontinuities in computers	70
	4.2	Changes in users, applications, sales channels, and methods of value capture	73
	5.1	Technological discontinuities in recording and playback equipment	85
	5.2	Impact of design-related decisions on key dimensions of performance	86
	6.1	Technological discontinuities in the semiconductor industry	101
	7.1	Standards for discontinuities/systems in the IT sector (1950–1995)	123
	7.2	Percentage of de novo semiconductor firms	126
	7.3	Differences between de novo and de alio semiconductor firms in 1995	128
	8.1	Examples of critical choices in the early years of complex industries	136
	8.2	Examples of critical choices in the early years of complex network industries	139
	10.1	Relevant equations for wind turbines	160
	10.2	Best solar cell efficiencies and theoretical limits	165
	10.3	Expected benefits from larger solar cell substrates	168